
Characterization of MGMT and EGFR protein expression in 
glioblastoma and association with survival

Lauren R. Schaff1, Dongyao Yan2, Sheeno Thyparambil2, Yuan Tian2, Fabiola Cecchi2, Marc 
Rosenblum3, Anne S. Reiner4, Katherine S. Panageas5, Todd Hembrough2, Andrew L. Lin6

1Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065

2NantOmics, Culver City, CA 90230

3Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065

4Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065

5Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065

6Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065

Abstract

Purpose—Understanding the molecular landscape of glioblastoma (GBM) is increasingly 

important in the age of targeted therapy. O-6-methylguanine-DNA methyltransferase (MGMT) 
promoter methylation and EGFR amplification are markers that may play a role in 

prognostication, treatment, and/or clinical trial eligibility. Quantification of MGMT and EGFR 

protein expression may offer an alternative strategy towards understanding GBM. Here, we 

quantify baseline expression of MGMT and EGFR protein in newly diagnosed GBM samples 

using mass spectrometry. We correlate findings with MGMT methylation and EGFR amplification 

statuses and survival.

Methods—We retrospectively identified adult patients with newly diagnosed resected GBM. 

MGMT and EGFR protein expression were quantified using a selected reaction monitoring mass 

spectrometry assay. Protein levels were correlated with MGMT methylation and EGFR 
amplification and survival data.
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Results—We found a statistically significant association between MGMT protein expression and 

promoter methylation status (p=0.02) as well as between EGFR protein expression and EGFR 
amplification (p<0.0001). EGFR protein expression and amplification were more tightly 

associated than MGMT protein expression and methylation. Only MGMT promoter methylation 

was statistically significantly associated with progression-free and overall survival.

Conclusions—Unlike EGFR protein expression and EGFR amplification which are strongly 

associated, only a weak association was seen between MGMT protein expression and promoter 

methylation. Quantification of MGMT protein expression was inferior to MGMT methylation for 

prognostication in GBM. Discordance was observed between EGFR amplification and EGFR 
protein expression; additional study is warranted to determine whether EGFR protein expression is 

a better biomarker than EGFR amplification for clinical decisions and trial enrollment.
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Introduction

Standard of care treatment for glioblastoma (GBM) includes radiation, chemotherapy with 

temozolomide, a DNA alkylating agent, and, often, alternating electric fields. Response to 

treatment is inadequate, yielding an overall survival (OS) of up to 21 months [1, 2]. 

Understanding the molecular landscape of GBM tumors is increasingly important for 

prognostication and clinical trial enrollment.

O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that removes 

DNA alkyl groups. Its expression is thought to be predominantly regulated by epigenetic 

silencing through methylation of the gene promoter region. Methylation of the MGMT 
promoter is predictive of response to alkylating chemotherapies, including temozolomide [3, 

4]. Because of the differences in response, temozolomide is often held in patients who are 

MGMT unmethylated. For this reason, accurate and reliable assessment of MGMT status is 

important in therapeutic decision-making and often determines trial eligibility. Increasingly, 

there is a lack of standardization in methylation testing and setting a threshold for stratifying 

patients, which contributes to considerable intra- and inter-assay variability. Moreover, there 

is often a “gray zone” of patients whose tumors are neither strongly methylated nor 

completely unmethylated[5, 6]. Such issues have resulted in poor reproducibility with inter-

laboratory discordance–in one study as high as 39% [7] despite evidence suggesting MGMT 
promoter methylation is relatively homogeneous throughout a tumor [8]. Theoretically, 

methylation serves as a surrogate marker for gene expression but attempts to quantify 

MGMT protein through immunohistochemistry (IHC) have been largely unsuccessful. 

Studies of concordance between methylation status and response to temozolomide, including 

survival, have yielded mixed results [8–10]. Interpretation of IHC is qualitative and staining 

is dependent on the operator as well as antibody used, suggesting an imperfect solution.

EGFR is another protein whose detection has become increasingly important in GBM. 

Approximately 58% of patients harbor EGFR alterations in their tumor genome, the most 

common being amplification of the EGFR gene. EGFR is a receptor tyrosine kinase whose 
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activation stimulates cellular proliferation and survival. There are several methods in use for 

identifying tumors with upregulated EGFR, including fluorescence in situ hybridization 

(FISH), assessment of mRNA transcription via real-time reverse transcription-polymerase 

chain reaction (rt-PCR), whole transcriptome sequencing (RNAseq), and next-generation 

sequencing approaches. The only proteomic approach in wide use is EGFR IHC; this assay 

is thought to be inferior at identifying tumors that are being driven by EGFR, though the 

protein product of the EGFR gene is the target of investigation of agents such as receptor 

tyrosine kinase inhibitors and EGFR-directed antibodies such as depatuxizumab mafodotin 

().

Our study quantifies baseline expression of both MGMT and EGFR proteins using mass 

spectrometry and correlates findings with MGMT methylation status as well as EGFR 
amplification. We then correlate protein expression data with overall and progression-free 

survival (PFS) in GBM patients treated upfront with radiation and temozolomide.

Methods

Sample Identification and Tissue Collection

We retrospectively identified adult patients with surgical resection of newly diagnosed GBM 

at our institution between the years 2000–2016. We selected only patients for whom 

methylation status, treatment course, and survival outcomes were known. We further 

selected only patients who received upfront radiation therapy and temozolomide at standard 

dosing as defined by the Stupp protocol[1]. Patients who received additional upfront therapy 

were not excluded from analysis. We found 54 patients who had tumor tissue available for 

testing. Samples had all been fixed in formalin and embedded in paraffin. Ten-micron tissue 

sections from each sample were placed on DIRECTOR microdissection slides.

MGMT Methylation

We selected only patients who had documented MGMT methylation testing of their initially 

resected tumor specimen. MGMT methylation was assessed by pyrosequencing or 

methylation-specific real-time PCR, according to our institutional practice at the time of 

surgery.

EGFR Amplification

We retrospectively reviewed charts to determine EGFR amplification status. Testing was 

performed via either FISH or next-generation sequencing.

Protein Quantification

MGMT and EGFR proteins were quantified using a selected reaction monitoring (SRM) 

mass spectrometry assay as previously described [11, 12]. Briefly, the tumor areas were 

marked up by a board-certified pathologist and were microdissected using a non-contact 

laser microdissection technique (Molecular Machines, Germany). The microdissected tumor 

tissue was solubilized to release peptides using the Liquid Tissue protocol (Expression 

Pathology, Rockville, MD) and the total protein levels were quantitated using a micro-BCA 

assay. Peptides TTLDSPLGK and IPLENLQIIR, were used to quantify MGMT and EGFR, 
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respectively. Synthetically labeled heavy peptides were mixed with the tumor-derived 

peptides and quantitated by SRM mass spectrometry on a TSQ Quantiva triple quadrupole 

mass spectrometer (Thermo Scientific, San Jose, CA) equipped with a nanoAcquityLC 

system (Waters, Milford, MA). Protein quantitation was normalized across all samples based 

on the total amount of protein analyzed in a given sample. Data analysis was conducted 

using the Pinnacle software (Optys Tech, PA).

To assess the analytical performance of the MGMT assay, a calibration curve of 11-nonzero 

points (100, 150, 200, 300, 400, 500, 600, 800, 1000, 5000 and 25000 amol) was generated 

in a Pyrococcus furiosus complex matrix (Pfu, Agilent Technologies) to determine the 

assay’s quantitation linearity. CVs for the various concentration points in the calibration 

curve ranged from 0.7% to 9.0% for samples analyzed in quintuplicate. The calibration 

curve showed linearity (R2 = 1.0) and low variations over the protein concentration range. 

Precision was assessed in 10 FFPE tumor samples across a range of spiked MGMT peptide 

concentrations from 125–10,000 amol/ug (n=3). The average intra-assay precision was 

3.13% CV for instrument #1 and 3.0% CV for instrument #2. The average inter-assay 

precision (different instruments, different days, and different operators) was 3.64% 

CV.Similarly to MGMT, EGFR assay’s analytical performance was previously determined 

and reported [11].

Statistics

Descriptive statistics such as frequencies, medians, and ranges were used to characterize the 

cohort under study. The Wilcoxon two-sample test was used to associate MGMT protein 

expression with promoter methylation and to associate EGFR protein expression with EGFR 
amplification status. OS was defined as time from GBM diagnosis until death or date of last 

follow up for those who were censored. PFS was defined as time from GBM diagnosis until 

death, progression as determined by RANO criteria, or date of last follow up, whichever 

occurred first. Cox modeling was used to associate variables of interest with OS and PFS. 

All p-values were two-sided with a level of statistical significance less than 0.05. All 

statistical analyses were performed in SAS (version 9.4, Cary, NC).

Results

Patient Characteristics

We obtained archival tissue samples from 54 patients. Three samples contained insufficient 

tumor tissue to yield accurate mass spectrometry results, and these patients were therefore 

excluded from further analysis. Of the remaining 51 patients, 17 were women (33%) and 34 

were men (67%) (Table 1). The median age at diagnosis was 63 (range 33–80 years) and the 

median Karnofsky Performance Status (KPS) was 90 (range 60–100). All patients had either 

a gross total (30, 59%) or a subtotal (21, 41%) resection at diagnosis, defined by post-

operative MRI.

One patient in the cohort was known to have a mutation in isocitrate dehydrogenase (IDH) 1 

(2%). Twenty-four patients were wildtype for IDH 1 and 2 by sequencing (47%). The 

remaining 26 patients did not have sequencing data and IHC for IDH1 R132H, if performed, 
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resulted as negative. These patients were therefore considered IDH not otherwise specified 

(NOS) (51%). All patients had MGMT promoter methylation testing results. Testing was 

performed via methylation specific real-time PCR (26, 51%) or pyrosequencing (25, 49%) in 

Clinical Laboratory Improvement Amendments certified environments at or near the time of 

diagnosis. Seventeen patients were determined to be MGMT methylated (33%) and 34 were 

MGMT unmethylated (67%). None of the patients in this series had indeterminate results.

EGFR status was known in 44 patients (86%). Twenty-three patients were EGFR amplified 

(45%) while 21 patients were not (41%). EGFR status was determined by FISH (36), genetic 

sequencing (18) or both tests (10) at or near the time of diagnosis. For the 10 patients who 

had both FISH testing and sequencing, results were always concordant. Amplification status 

was unknown in 7 patients (14%). Full patient details are available in Supplementary Table 

1.

Correlation between MGMT expression levels and MGMT methylation status

MGMT protein expression quantified by mass spectrometry was correlated with results of 

MGMT methylation testing. Mass spectrometry data was obtained for 51 patients. Protein 

concentration ranged from non-detectable (ND) in 26 patients (51%) to 608.8 amol/μg 

(Figure 1). The median concentration was ND. Of the 17 patients whose tumors tested 

positive for MGMT methylation, 13 had ND levels of MGMT protein by SRM mass 

spectrometry (76%). The remaining four patients (24%) expressed protein at concentrations 

of 130.5, 139.0, 285.4, and 608.8 amol/μg. Of the 34 patients whose tumors tested negative 

for MGMT promoter methylation, 21 had detectable levels of MGMT protein (62%) ranging 

in concentration from 108.3 – 487.4 amol/μg while 13 (38%) had undetectable levels. The 

median concentration of MGMT protein expression in unmethylated tumors was 160.4 

amol/μg. Overall, MGMT methylation status was considered concordant with protein 

expression detectability in 34 of 51 patients (67%). Association between MGMT protein 

expression and promoter methylation status was statistically significant (p=0.02).

In five tumors, SRM analysis was performed on tissue from two separate tumor blocks. Four 

of 5 patients (80%) had consistent results between the two samples analyzed. Of these, 2 

patients had ND MGMT protein concentrations in both samples. Two patients had detectable 

MGMT protein concentrations from both samples (134 amol/μg and 175.3 amol/μg in one 

patient; 142.3 amol/μg and 173 amol/μg in the other). The final patient had ND MGMT 

concentration in one sample and a detectable concentration of 130.5 amol/μg in the other.

Correlation between EGFR expression levels and EGFR amplification

EGFR protein concentration was determined in 51 tumor samples. Concentrations ranged 

from ND – 173,676.3 amol/μg (Figure 2). The median concentration was 1,128.0 amol/μg 

and three patients had ND levels (6%). Two of the three patients with ND EGFR protein 

were not amplified (both by FISH testing). The EGFR status of the third patient was 

unknown. Median EGFR protein expression in amplified tumors was 9,263.2 amol/μg 

(254.6–173,676.3 amol/μg) vs 257.0 amol/μg (0–21,121.5 amol/μg) in non-amplified 

tumors. The association between amplification status and protein expression held whether 

amplification was assessed by FISH (p=0.0005), sequencing (p=0.0083), or either method 
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(p<0.0001). Despite this correlation, there was significant overlap in protein expression 

levels among samples that were determined EGFR amplified and non-amplified by FISH/

sequencing.

Correlations with survival

The median PFS in our cohort was 10.0 months (95% CI: 7.6–13.7) and median OS was 

21.7 months (95% CI: 18.1–26.1). Clinical variables such as sex, age, KPS at diagnosis, and 

extent of resection were not statistically significantly associated with PFS or OS in our small 

cohort (Supplementary Table 2). MGMT promoter methylation status was the only variable 

statistically significantly associated with PFS and OS; patients who were =methylated had a 

reduced hazard of progression and death (PFS hazard ratio, 0.41; 95% CI: 0.22–0.74; 

p=0.003; OS hazard ratio, 0.40; 95% CI: 0.21–0.76; p=0.005).

Patients with methylated MGMT promoter had a median PFS and OS of 19.2 mo (95% CI: 

11.6–28.3) and 36.1 mo (95% CI: 21.7–50.0), respectively vs 7.6 mo (95% CI: 5.7–9.9) and 

18.2 mo (95% CI: 12.4–22.2) in patients with unmethylated tumors. There was no 

significant difference between PFS and OS in patients with non-detectable levels of MGMT 

protein by mass spectrometry as compared to patients with detectable levels of MGMT 

(median PFS 11.5 mo (95% CI: 7.2–17.6) vs 9.9 mo (95% CI: 5.7–14.0); median OS 22.7 

(95% CI: 16.4–31.1) vs 21.1 mo (95% CI: 13.8–26.1)). MGMT protein expression was not 

statistically associated with PFS or OS by Cox regression analysis. Moreover, in patients 

whose tumors tested positive for MGMT methylation, presence or absence of protein 

expression did not significantly influence PFS or OS (Table 2). Similarly, detection of 

MGMT expression did not impact PFS or OS in patients whose tumors were MGMT 
unmethylated.

EGFR amplification status was not associated with survival. Patients whose tumors were not 

EGFR amplified demonstrated median PFS of 11.5 mo (95% CI: 5.8–17.3) and median OS 

of 21.3 mo (95% CI: 12.4–57.2) vs 9.6 mo (95% CI: 7.6–13.7) and 21.7 mo (95% CI: 14.5–

27.2) in patients whose tumors were EGFR amplified. Cox regression analysis did not 

demonstrate EGFR protein expression to be significantly associated with PFS or OS.

Discussion

The relationship between MGMT expression and promoter methylation status has been 

explored using IHC techniques with no clear consensus emerging. Multiple studies failed to 

demonstrate a correlation between IHC quantification of MGMT protein with methylation 

testing results [9, 10, 13–15]. While some studies have reported associations between 

protein expression and patient outcomes with alkylating chemotherapy [13, 16–19], these 

results are not consistent [9, 15, 20, 21].

The reasons for the failure of IHC to reliably substitute for methylation testing are unclear. 

Some evidence suggests the interpretation of IHC results is not standardized and is subject to 

interobserver variability [9, 15, 19]. Results may also differ based on the specific antibody 

used in IHC testing [9, 15]. We analyze MGMT protein expression with mass spectrometry, 

which yields a quantitative value and eliminates the subjectivity of interpretation. While we 
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report an association between MGMT protein expression and methylation status, the rate of 

discordance was 33%. Despite reported high rates of interlaboratory discrepancy with 

MGMT methylation results, this is unlikely to be the cause of the observed discordance [7]. 

Importantly, MGMT promoter methylation was strongly associated with improved OS and 

PFS in our cohort while MGMT protein expression was not.

We observed MGMT protein expression in 24% of methylated tumors. Prior experience with 

IHC testing suggests intra-tumoral quantities of MGMT can be overestimated due to 

contamination by healthy tissue, such as endothelial cells and lymphocytes [14]. Despite our 

attempts to mitigate this problem by requiring pathologic review of slides prior to 

processing, it is possible that a small amount of stroma or healthy tissue was still present. 

Conversely, 38% of unmethylated tumors did not have detectable levels of MGMT protein 

expression. Protein quantification at diagnosis may underestimate a cell’s ability to produce 

MGMT protein, as radiation and alkylating therapy may induce expression. Additionally, 

MGMT protein expression likely depends on factors other than promoter methylation. For 

instance, NF-κB and p53 have both been implicated in regulating MGMT expression [22, 

23]. Data indicating a correlation between RNA expression and methylation status but no 

correlation between RNA expression and OS suggest post-transcriptional regulation may 

also be at play [21, 24]. In our cohort, MGMT protein expression and MGMT promoter 

methylation were less strongly associated than EGFR protein expression and EGFR 
amplification, which supports the contention that MGMT protein expression is not 

exclusively regulated by epigenetics.

MGMT protein expression was not predictive in this data set. We did not detect a survival 

difference in unmethylated patients who expressed MGMT protein compared with patients 

with undetectable MGMT (19.1 mo vs 16.4 mo, p=0.54). We did not find that the 

combination of MGMT promoter methylation status and protein expression was 

significantly associated with survival, in contrast to a similar study performed using IHC 

technique [10]. It may be that methylation of the MGMT promoter is a surrogate marker for 

broader changes to the epigenome that may affect treatment response in other ways [25, 26]. 

Interestingly, Patient 43 in our series was MGMT methylated but expressed the highest 

concentration of MGMT protein in this series (608.8 amol/μg). This patient had a PFS and 

OS of 17.3 mo and 57.2 mo, respectively, far beyond the median of our cohort, which 

supports this idea. We might have seen a stronger correlation between MGMT protein 

expression and methylation status (and possibly survival), with more sensitive methods for 

quantifying MGMT protein (below 108 amol/μg).

Of interest, MGMT protein expression was quantified in two different tumor blocks for five 

patients included in the study. Testing in four patients yielded concordant results while 

expression in the fifth patient was discordant. As MGMT methylation is homogeneous 

throughout a tumor [8], we hypothesize discordance is related to regulatory factors such as 

transcriptional or translational processing. Additionally, the sensitivity of our assay may 

have resulted in a discordant result. Although MGMT protein expression did not predict 

patient outcomes in newly diagnosed GBM, quantification may still be useful. MGMT 

expression, but not promoter methylation, correlates with patient outcomes in pituitary 

tumors and is currently assessed via IHC [27, 28]. Moreover, therapeutic strategies to 
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specifically target MGMT-deficient cells are under development [29] and quantifying 

MGMT protein expression may be useful in this setting.

EGFR protein expression correlated significantly with amplification status whether tested by 

FISH or sequencing. EGFR is an investigational target in GBM and the significance of 

amplification is unknown, though multiple therapeutic strategies targeting EGFR-amplified 

tumors are being investigated. We did not find a correlation between PFS or OS and EGFR 
status. While some individual studies have shown shorter OS with EGFR amplification, a 

prognostic role of EGFR amplification has never been confirmed [30]. Further study is 

needed to correlate levels of EGFR expression with response to EGFR-directed therapy and 

to investigate expression of EGFR protein throughout a tumor. Though EGFR amplification 

and protein expression are strongly associated, there was still considerable overlap in EGFR 

protein expression among tumors testing both positive and negative for EGFR-amplification. 

Further study is needed to correlate levels of EGFR protein expression with response to 

EGFR-directed therapy. It is possible that treatment response to agents such as 

depatuxizumab mafodotin, an antibody drug conjugate that targets a unique conformation of 

EGFR in the setting of EGFR overexpression, is better predicted by protein expression than 

amplification status.

Our study was limited by its retrospective nature and reliance on archived tissue samples. As 

we only examined tumors with prior methylation testing and remaining sample, all patients 

in our cohort had undergone gross or subtotal resections and none had only been biopsied. 

This likely contributed to the relatively high KPS and the longer OS in our cohort than that 

of a typical GBM population. Of note, we did not detect a survival difference between 

patients with gross total and subtotal resections, contradictory to previously published 

findings [31, 32]. This is likely a result of the retrospective nature of the study, the small 

cohort size, and the way patients were selected. Specifically, only patients with available 

archival tumor tissue were analyzed, suggesting all patients had sizable tumor tissue 

removed. Moreover, our patients did not all receive uniform treatment. While all were 

treated with radiation and temozolomide, several in this cohort were enrolled in clinical 

trials for upfront therapy and may have received additional treatments. As our primary 

outcome was based on tissue analysis, these patients were included. Despite these 

limitations, we feel that this study is an important addition to the literature as it elucidates 

the pitfalls and the promise of using mass spectrometry for evaluating biomarkers in GBM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Bar graph indicating MGMT protein concentrations as determined by mass spectrometry in 

each patient sample. Shading indicates MGMT methylation status with light shading 

representing MGMT methylated tumors and dark shading representing MGMT 
unmethylated tumors.
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Fig. 2. 
Bar graph indicating EGFR protein concentrations as determined by mass spectrometry in 

each patient sample. Shading indicates EGFR amplification status with light shading 

representing non-amplified tumors, dark shading representing amplified tumors, and 

medium shading representing unknown amplification status.
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Table 1.

Patient Characteristics

Characteristic Median Range Number (%)

Sex

 Female 17 (33)

 Male 34 (67)

Age 63 33–80

KPS 90 60–100

Surgery Type

 GTR 30 (59)

 STR 21 (41)

IDH Statu

 IDH mutated 1 (2)

 IDH wildtype 24 (47)

 IDH NOS 26 (51)

MGMT Status

 MGMT methylated 17 (33)

 MGMT unmethylated 34 (67)

EGFR Status

 EGFR amplified 23 (45)

 EGFR not amplified 21 (41)

 Amplification unknown 7 (14)
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Table 2.

Association between MGMT methylation, MGMT protein expression, PFS and OS.

PFS OS

N PFS (Mo) Median, (95% 
CI)

Log Rank p Median OS Median, 
(95% CI)

Log Rank p

MGMT Methylated promoter, ND 
expression

13 19.2 (11.5–29.1) 0.66 29.9 (21.7–50.0) 0.82

Methylated promoter, 
detectable expression

4 18.8 (15.4–28.3) 43.8 (29.0–57.2)

MGMT Unmethylated promoter, ND 
expression

13 7.2 (5.5–9.6) 0.98 16.4 (12.3–27.2) 0.54

Unmethylated promoter, 
detectable expression

21 8.6 (5.1–12.6) 19.1 (12.4–22.2)
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